Media reports excitedly announced that the revolutionary material graphene could soon enable 3D 'holographic' displays. Although reported as a breakthrough for glasses free 3D mobile displays, the scientific team behind the technology claim that due to graphene's strength, there is no limit for scaling up to larger displays - i.e. 'holographic' tvs.

This, the team says, could one day revolutionise displays -- with the most obvious implications in mobile technology and wearable technology. It could also be used for holographic anti-counterfeit tags, security labels, and personal identification.

This makes sense for a first practical application, too: currently, the technology has only been used to produce holographic images up to one centimetre in size. Li and Gu note, however, that there is no limit to its scalability, thanks to graphene's mechanical strength.

However, a reader in the comments section underneath the article urges caution - again the term 'holographic' is being used here to refer to 2D displays that create the illusion of a three dimensional display, rather than a Star Wars type holographic projection.

I'm so sorry to disappoint but unfortunately this is a misinterpretation of the paper..
It's a common misinterpretation of "holography". Traditional holographic images have absolutely nothing to do with the science fiction idea of "holograms" and what are referred to as "holograms" in the movies. This scientific paper uses the traditional meaning of holograms.

I'd suggest anyone reading this to be alert of this misconception next time when you hear the term "hologram" or "holographic images/imaging"..
In nearly all cases, these terms are used in either of these three contexts: experts talking about traditional holograms, marketeers stretching the term to create interest in a 3D illusion product, and science fiction films referencing what in truth are open air 3D projections. Obviously these are very different, and the latter is still very much science fiction (except for one comparatively primitive Aerial 3D voxel display created by Aerial Burton in Japan).
Again, the holography talked about in this paper is traditional holography, the original meaning. It's the same thing you sometimes see on those 3D postcards, drinking cups for kids and flippos. The kind of hologram that can also be found on modern money, passports and other security objects that need verification of genuinity.

Smartphones that project real 3D holograms into thin air could be standard in the latest smartphones of 2016 according to numerous reports over the last few days. A high-tech company in the USA claims to have engineered a breakthrough in chip technology which allows for the projection of high-definition holograms in smartphones and even laptops and tvs. The first holographic smartphones are expected to ship in 2016 - just two years away. Presumably it wont be long after until the first holo-tvs arrive.

Rumours have been circulating for years of a 3D Amazon Kindle smartphone, right back to the explosion of interest in stereoscopic 3D that began with Avatar. However, it seems that according to well sourced rumours now being reported upon, that Amazon are indeed soon to anounce a 3D phone. However, the possible smartphone appears not to be a stereoscopic (or autostereoscopic glasses free) 3D phone, but a 'hologram' phone that creates the illusion of holographic 3D by tracking the viewers eyes and manipulationg the position of the objection on screen to create a real 3D effect.

Although arguably only 'psuedo-holographic', this technology is being worked on by a number of leading tech companies, including Sony, and is likely to be the immediate future of holographic entertainment. If the 3D Amazon phone does appear and is a success, then there is no reason not to think that the same technology could appear in the first 'holo-tvs' within the next couple of years.

ONLINE RETAIL GIANT Amazon reportedly will announce its first smartphone, a 3D-capable device with retina tracking technology, in two months time.

That's according to the Wall Street Journal (WSJ), which reports that Amazon will announce its first smartphone at an event in June (paywalled), before it releases the handset later in the year.

It won't be your average smartphone, apparently. The report claims that Amazon's smartphone will support glasses-free 3D, which it will achieve by using retina tracking technology embedded in four front-facing cameras.

This, according to speculation, will also allow users of the smartphone to scroll through menus using just their eyes.

The WSJ said, "The 3D screen technology can sense the movement of a person's eyes and whether the screen is moving closer to a user's face, according to people familiar with the matter. In response, the phone will be able to automatically zoom into images as it moves closer to a user's face and could manipulate text and images as a person moves the phone."

The report added that this technology will set Amazon's smartphone apart for gaming, saying, "the phone's software is also optimized for very visual games, designed to provide a sense of depth" and claiming that it will have tight integration with Amazon's Fire TV set-top box.

Samsung have reportedly poured up to $10 million into aiding an Israeli start-up firm develop a 3D holographic technology.

The Israeli firm - Mantis Vision - is working on producing a technology that allows 3D depth recording of moving images.  They have already produced a prototype handheld 3D image scanner that can enable a playback of the scene that can be manipulated to view from any angle (see the YouTube video below).

One innovative use of the technology, said the company, is for augmented reality, where the dynamic 3D images captured by the camera are integrated with static 3D backgrounds. With the technology, a game creator could build a 3D gaming environment, allowing individuals to upload images of themselves as avatars, which can then be programmed into the game. In addition, the company said, “in future thinking, we see this camera demo as a great example of how real life capturing of content for Holographic (3D) TV can be accomplished.”

Sources include :

Mantis Vision website

MIT Researcher Michael Bove, widely regarded as one of the handful of people on the planet who could make holographic tv a reality in the next decade, has spoken of the chances of the technology becoming mainstream.  In line with the predictions of other experts, Bove claims that holo tv on mobile devices is a near term possibility, but for larger devices it is further out.  Other experts have claimed that holographic smartphones could be a reality within the next 5 years, with most still predicting that Holo-TVs themselves are still around a decade away.

Holographic 3D might be possible on mobile devices in the “near future,” though it is further out for large TV displays, according to V. Michael Bove. Jr., a research scientist at the MIT Media Lab, who presented an introduction to holographic TV, Thursday during a webcast hosted by the Society of Motion Picture and Television Engineers.

Predicting a “bright” future for holographic TV, he related that it is “more practical than many people think." In fact, he said “multiple research groups” are working toward it’s potential – making it realistic, comfortable for viewers, and high quality.


He believes that these recent technological advancements together with the widespread attention that has been placed on shortcomings of "traditional" 3D TV could create a real opportunity for holographic 3D TV.

See more :

After what might be the biggest breakthough yet in holographic technology, Michael Bove and his world leading team a the MIT are now confidently predicting that affordable holographic tvs could be on the market within 10 years.

An optical chip that the team has built for less than $10, has been show to be able to power moving and coloured holographic images at a rate of 30 frames per second - the standard rate for normal tvs.

Researchers at MIT’s Media Lab are reporting a new approach to generating holograms that could lead to color holographic-video displays that cost less to produce than existing monochromatic technology. Finally.

Daniel Smalley, a graduate student in the Media Lab, began by building a prototype color holographic-video display with a similar resolution to a standard-definition TV. This display could produce video images 30 times a second, which is deemed fast enough to produce the illusion of motion. All of this is thanks to an optical chip that he built himself for around $10.


Hungarian company 'Holografika' have announced the first real fruits of their EU funded endeavours to develop a Holo TV - the world's first 3D holographic display screen has been unveiled at a trade fair this month and will go on sale early next year (2013).

Hungarian holographic specialists Holografika will show IBC visitors a new 30” HoloVizio monitor which uses light-field technology to offer viewers true glasses-free 3D video.

The new 30” HoloVizio 80WLT will be targeted towards the professional markets such as medical and visualisation rather than home entertainment (for now) but it avoids the many limitations of lenticular technology with continuous parallax in the entire field-of-view, allowing people to even look behind objects. There are no sweet spots, invalid zones or repeated views and viewers can be positioned anywhere in front of the display. The full-angle geometrically correct view is achieved through reconstructing all the light beams leaving the holoscreen even under extreme angles in a range up to 180 degrees.

You can also visit the home page of Holografika to see just how close the company are to making a real holographic television :

Another team of researchers has demonstrated that the Kinect can be used as the basis of a system to construct 360 degree holograms.  The 'TeleHuman' uses 6 kinect sensors, a 3D projector, and a cylindrical display, to allow live 'holographic' video chat in which the viewer can walk around the cylinder and see the person as he or she really is there.

The Human Media Lab of Queens University Canada say that the TeleHuman could be available on the market for as little as $5,000 within just 5 years.

Australian expert on holographics explains that the recent Tupac 'live' hologram was not real holography at all, and actually based on an old stage trick that dates back to the 19th century.  However, the expert from Monash University in Melbourne predicts that real holographic video will be mainstream in 10 years or so time, with the only obstacles remaining being the huge bandwidth and computer processing power required.

Holograms are perhaps the last piece of advanced technology that works best on film; they can be made only on extremely fine-grained black-and-white film but, surprisingly, can store full colour information.

Digital camera pixels are ten times too large to record holograms: holo-cameras need a resolution of gigapixels. Even the iPad’s new “high-resolution” display is far too coarse to reconstruct a hologram. As a result, holography remains stuck in the pre-digital doldrums.

It needs another ten years to become a mainstream technology. MIT’s Media Lab has a holographic TV prototype with true parallax and depth (and, of course, no clunky glasses). But it is closer to TV circa 1930 than it is to R2D2’s Princess Leia, delivering coarse, jerky images in laser monochrome.


Read the full interview at :


In a fascinating article on the prospects for 3D entertainment - including Holo TV - in the next decade, Michael Bove of the MIT has declared that inexpenisve desktop holographic displays could be on the market within 5 - 7 years.

This fits in with other expert's predictions that at least smaller Holographic TVs could be available in the second half of this decade.

Apparently the MIT Media Lab has had holographic video displays (albeit small ones) since 1989 and in the past few years has managed to drive them with off-the-shelf PCs. The latest development, announced earlier in the year, has been to capture imagery in real time. So does that mean that it’s becoming a mainstream technology and that we’ll soon see holographic displays for our PCs and holographic TVs in our living rooms? According to Professor Bove, “there could be a commercial laptop or desktop-sized holographic display … costing not much more than current flat-panel displays in about five to seven years. Larger screens will take longer.